Multivariate Bayesian Statistics: Models for Source Separation and Signal Unmixing

نویسنده

  • W. Michael Conklin
چکیده

This section will review those books whose content and level reflect the general editorial policy of Technometrics. Publishers should send books for review to Eric R. Ziegel, BP Naperville Complex, Mail Code C-7, 150 West Warrenville Road, Naperville, IL 60563-8460 ([email protected]). The opinions expressed in this section are those of the reviewers. These opinions do not represent positions of the reviewer’s organization and may not reflect those of the editors or the sponsoring societies. Listed prices reflect information provided by the publisher and may not be current. The book purchase programs of the American Society for Quality can provide some of these books at reduced prices for members. For information, contact the American Society for Quality, 1-800-248-1946.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multivariate Bayesian Statistics: Models for Source Separation and Signal Unmixing. Daniel B. Rowe

utilization of conditional independence and proportionality more accessible to applied researchers. Finally, Chapter 8 provides useful approaches for testing pieces of a simulator and revisits the issue of formal model comparison. Here an importance sampling estimator, the candidate’s formula, and reciprocal importance sampling are discussed. Example 8.2.3 applies the candidate’s formula to a n...

متن کامل

On the indeterminacies of convolutive blind signal separation based on second order statistics

Recently, several blind signal separation algorithms have been developed which are based on second order statistics. Little has been published however on whether second order statistics are sufficient to obtain a unique solution. Especially for applications that involve convolutive mixing and unmixing of signals that are correlated in time, there is a lack of knowledge on why and in what cases ...

متن کامل

Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information

Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...

متن کامل

Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information

Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...

متن کامل

Blind Separation of Jointly Stationary Correlated Sources

The separation of unobserved sources from mixed observed data is a fundamental signal processing problem. Most of the proposed techniques for solving this problem rely on independence or at least uncorrelation assumption for source signals. This paper introduces a technique for cases that source signals are correlated with each other. The method uses Wold decomposition principle for extracting ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Technometrics

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2005